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Abstract. Considered the question of permissibility of non-standard clock synchronizations in inertial frames, de-

clared by the conventionalist concept of simultaneity. It is shown that the introduction of a unified simultaneity for all 

inertial frames, permissible by this concept, leads to physical results in areas of electrodynamics, mechanics, optics, 

contradicting to the principle of relativity. 

Special relativity considers physical processes in inertial frames moving relative to each other with constant velocity 

in an isotropic space. Is used Einstein's clock synchronization in each frame. Its using is based on the assumption of 

independence in all frames of velocity of light in a vacuum from direction of propagation. The velocity of light is con-

sidered to be the maximum velocity of propagation of physical signals, owing to what a number of other synchroniza-

tions along with Einsteinian are admissible according to the known conventionalist concept of simultaneity [1-5]. Is 

permissible, in particular, the introduction of a unified simultaneity for all inertial frames. 

The essence of the conventionalist concept consists in the following. Let light signal is sent at time 𝑡1 from point A, 

and after reflection at point B is returned to A at the time 𝑡3. The time of arrival of the signal at the point B can be con-

sidered as simultaneous with any moment 𝑡2 at point A, satisfying the condition 

 𝑡2 = 𝑡1 + 𝜂(𝑡3 − 𝑡1), (1) 

where 0 < 𝜂 < 1 is the so-called synchronization parameter. 

It is necessary to select among synchronizations, defined by the equality (1), one synchronization, in which the time 

t in the considered frame does not depend on the spatial coordinate r (vectors written here and below in bold). We sup-

pose, that such synchronization is performed. We now introduce the time τ, that different from t by clock synchroniza-

tion. It is necessary in this case take into account the following circumstance. Change of synchronization means execu-

tion of unequal for different points of space shift of start of timing. Therefore, the time τ differs from t on some function 

𝑓(𝒓). That is 

𝜏 = 𝑡 + 𝑓(𝒓). 
Since t does not depend on r, then τ is a function of r. If to operate with the time τ in the normal way, you can come 

to incorrect physical results. Consider a simple example. We suppose, that f(r) is a linear function. In this case ∇f = 

const. We introduce a Cartesian coordinate systems x, y, z in the considered frame, so that the x direction coincides with 

the direction of the vector ∇f. We will consider the free rotation of a rigid body about the z-axis. We get for "angular 

velocity" of rotation dφ/dτ  
𝑑𝜑

𝑑𝜏
=

𝜔

1 − 𝛻𝑓𝜔𝑟𝑠𝑖𝑛𝜑
 , 

where φ is the angle measured from the x axis, r is the distance of the considered point of the rigid body to the z-

axis, ω=dφ/dt=const. "Angular speed" dφ/dτ is dependent on the angle and on the distance from the axis of rotation. 

We choose Einstein's synchronization condition only in one inertial frame K. We choose the synchronization condi-

tion in all other inertial frames depending on their velocity relative to the frame K so as to provide in these frames uni-

fied simultaneity with the frame K. We assume that one of the inertial frames K' moves relative to K with velocity 𝑽. 

We introduce in K and K' the Cartesian coordinate systems with axes, respectively, xyz and x'y'z' so that the direction of 

the coordinate axes x and x' coincided with the direction of the vector 𝑽. We believe that the time 𝑡′ in the frame K' 

differs by the amount 
𝑉𝑥′

𝑐2  from the time τ' corresponding to the Einstein's synchronization in this frame 

𝑡′ = 𝜏′ +
𝑉𝑥′

𝑐2
 . 

That is, the synchronization parameter  𝜂 in K' is 

 𝜂 =
1

2
(1 +

𝑉

𝑐
cos𝜗′), (2) 

where 𝜃′ is the angle between the axis x' and the direction of light emission from point A. Is selected the synchroni-

zation condition in all other inertial frames same as in K'. This choice of synchronization condition is equivalent to 

Einstein's synchronization from the viewpoint of the conventionalist concept. But this choice of synchronization condi-

tion in the isotropic space means, in contrast to Einstein's synchronization, the introduction of time depending on the 

spatial coordinate x'. This choice of synchronization condition can be correct only in the anisotropic space with the 

corresponding character of anisotropy. But the anisotropy in such space must to manifest itself in physical processes. 

Let's see what the physical results are the consequence of the choice of the synchronization condition (2). 

Transformations of spatial coordinates and time from K to K', corresponding to the synchronization condition (2), 

have the form 
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 𝑥′ =
𝑥 − 𝑉𝑡

√1 − 𝑉2 𝑐2⁄
, 𝑦′ = 𝑦, 𝑧′ = 𝑧, 𝑡′ = √1 − 𝑉2 𝑐2⁄ 𝑡.  (3) 

The transformation of time (3) is different from the Lorentz transformation of time by an amount 
𝑉𝑥′

𝑐2 . But the trans-

formations (3) can also be considered as Lorentz transformations, since Lorenz did not recognize the relativity of simul-

taneity, and he believed that the time t', appearing in the transformations (3), is a true time and the aforementioned time 

𝜏′ called, citing his, "no more than an auxiliary mathematical value” [6]. 

We obtain the transformations of components of the velocity u of the particle and the angle 𝜃𝑢 between vectors u 

and 𝑽 using the coordinate transformations (3) 

 𝑢𝑥
′ =

𝑢𝑥 − 𝑉

1 − 𝑉2 𝑐2⁄
 , 𝑢𝑦

′ =
𝑢𝑦

√1 − 𝑉2 𝑐2⁄
 , 𝑢𝑧

′ =
𝑢𝑧

√1 − 𝑉2 𝑐2⁄
 ,  (4) 

 cos𝜃𝑢
′ = (cos𝜃𝑢 −

𝑉

𝑢
)[(1 −

𝑉

𝑢
cos𝜃𝑢)2 + (

𝑉2

𝑢2
−

𝑉2

𝑐2
) sin2𝜃𝑢]− 

1
2  (5) 

where 𝜃𝑢
′  - the angle between the velocity vector u' of the particle in the frame K' and the axis x'. We obtain for the 

speed of light in a vacuum in the frame K', by using the transformations (4), (5)  

 
𝑐′ =

𝑐

1 +
𝑉
𝑐

cos𝜃′
  

(6) 

where 𝜃′- the angle between the direction of light propagation and the axis x'.  

The equations of physical laws have the usual kind in the frame K, where selected Einstein’s synchronization condi-

tion. We obtain the expression of the Lagrange function of a charged particle in an electromagnetic field in the frame 

K', writing the equation of the principle of minimal action in the frame K and performing in this equation the change of 

variables  

 𝐿′ = −𝑚𝑐2√(1 −
𝑽𝒖′

𝑐2
)2 −

𝑢′2

𝑐2
+

𝑒

𝑐
𝑨′𝒖′ − 𝑒𝜑′ (7) 

where 𝒖′ - the velocity vector of the particle, m is the mass, e is the charge, 𝑨′ and φ' - vector and scalar potentials, 

which are associated with the corresponding values A and φ in the frame K by the equalities 

 𝐴𝑥
′ = 𝐴𝑥√1 − 𝑉2 𝑐2⁄ , 𝐴𝑦

′ = 𝐴𝑦 , 𝐴𝑧
′ = 𝐴𝑧, 𝜑′ =

𝜑 −  
𝑉
𝑐

𝐴𝑥

√1 − 𝑉2 𝑐2⁄
 .  (8) 

We have similarly for the generalized impulse P and energy ℰ of a particle  

 𝑃𝑥
′ = 𝑃𝑥√1 − 𝑉2 𝑐2⁄  , 𝑃𝑦

′ = 𝑃𝑦 , 𝑃𝑧
′ = 𝑃𝑧 , ℰ′ =

ℰ − 𝑉𝑃𝑥

√1 − 𝑉2 𝑐2⁄
 ,  (9) 

The expressions for P' and ℰ′ is written in the form 

 𝑷′ =
𝑚[𝒖′ + 𝑽(1 − 

𝑽𝒖′

𝑐2 )]

√(1 −  
𝑽𝒖′

𝑐2 )2 −  
𝑢′2

𝑐2

+
𝑒

𝑐
𝑨′,  (10) 

 ℰ′ =
𝑚𝑐2(1 − 

𝑽𝒖′

𝑐2 )

√(1 −
𝑽𝒖′

𝑐2 )2 −  
𝑢′2

𝑐2

+ 𝑒𝜑′ .  (11) 

The equality is true for the kinetic energy ℰ0
′  of a particle moving under the action of the force 𝑭′ 

 
𝑑ℰ0

′

𝑑𝑡′
= 𝑭′𝒖′,  

Equation of dynamics can be written considering this equation and expressions (10) and (11) in the form 

 

𝑑

𝑑𝑡′

𝑚𝒖′

√(1 −
𝑽𝒖′

𝑐2 )2 −
𝑢′2

𝑐2

= 𝑭′ −
𝑽

𝑐2
(𝑭′𝒖′),  

(12) 

or 
𝑑

𝑑𝑡′
[
ℰ0

′

𝑐2
(𝑽 +

𝒖′

1 −
𝒖′𝑽
𝑐2

)] = 𝑭′,  (13) 

We introduce in K' electric  𝑬′ and magnetic 𝑯′ fields and produce in the equalities 
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𝑬′ = −
1

𝑐

𝜕𝑨′

𝜕𝑡′
− 𝜵𝜑′, 𝑯′ = 𝑟𝑜𝑡𝑨′ 

change variables by using the transformations (3), (8). At that, should take into account here and further that  
𝜕

𝜕𝑡′
=

1

√1 − 𝑉2 𝑐2⁄
(

𝜕

𝜕𝑡
+ 𝑉

𝜕

𝜕𝑥
) , 

since 
𝜕

𝜕𝑡′ is calculated at constant x', which corresponds to 

𝑥 = 𝑉𝑡 + 𝑐𝑜𝑛𝑠𝑡 . 
The result is the transformations of electric and magnetic fields 𝑬 and 𝑯 in the form 

𝐸𝑥
′ = 𝐸𝑥  , 𝐸𝑦

′ =
𝐸𝑦 − 

𝑉
𝑐

𝐻𝑧

√1 − 𝑉2 𝑐2⁄
 , 𝐸𝑧

′ =
𝐸𝑧 +  

𝑉
𝑐

𝐻𝑦

√1 − 𝑉2 𝑐2⁄
 , 

 𝐻𝑥
′ = 𝐻𝑥 , 𝐻𝑦

′ = 𝐻𝑦√1 − 𝑉2 𝑐2⁄  , 𝐻𝑧
′ = 𝐻𝑧√1 − 𝑉2 𝑐2⁄  ,  (14) 

We obtain the following equations for the frame K' from the second pair of Maxwell's equations, using the transfor-

mations (3), (14) 

 𝑟𝑜𝑡𝑯′ = (1 −
𝑉2

𝑐2
)

1

𝑐

𝜕𝑬′

𝜕𝑡′
+

4𝜋

𝑐
[𝒋′ + (𝜌′ −

𝒋′𝑽

𝑐2
)𝑽] −

𝑉

𝑐

𝜕𝑬′

𝜕𝑥′
−

1

𝑐2

𝜕

𝜕𝑡′
[𝑽𝑯′] , (15) 

 𝑑𝑖𝑣𝑬′ = 4𝜋 (𝜌′ −
𝒋′𝑽

𝑐2
) −

1

𝑐2

𝜕𝑬′𝑽

𝜕𝑡′
,  (16) 

where ρ' is charge density, j' is current density. 

The first pair of Maxwell's equations has in K' the same kind, as in K. 

We define field of a motionless point charge in the frame K'. The expressions for fields of a charge moving in the 

frame K with constant velocity 𝑽 

 𝑬 =
(1 −

𝑉2

𝑐2 ) 𝑒𝒓

𝑟3(1 −
𝑉2

𝑐2 𝑠𝑖𝑛2𝜓)1,5

 , 𝑯 =
1

𝑐
[𝑽𝑬] .  (17) 

We obtain the expressions for 𝑬′ and 𝑯′, doing change of variables in the expressions (17) using the transformations 

(3), (14),  

 𝑬′ =
𝑒𝒓′

𝑟′3
 , 𝑯′ =

1

𝑐
[𝑽𝑬′] .  (18) 

It follows from (18) that the magnetic field exists in the K' near motionless charges. It can be detected, for example, 

by the action on the conductors with an electric current. It follows from equation (16) and the equation of continuity, 

that conductor with a constant current, motionless in the frame K', contains electric charge with density 

  𝜌′ =
𝒋′𝑽

с2
 .  (19) 

The force acts on the element dΩ' of this conductor in an electric field  

 𝑑𝑭1
′ =

𝑬′

𝑐2
(𝒋′𝑽)𝑑𝛺′.  (20) 

Using the equality (18), (20), we obtain the expression for the force 𝑑𝑭2
′  acting from the motionless of the charges 

on the element 𝑑𝛺′of conductor with a constant current 

 𝑑𝑭2
′ =

𝑽

𝑐2
(𝑬′𝒋′)𝑑𝛺′ .  (21) 

We write equation of dynamics for a homogeneous linear conductor of length L, mass m with a constant current 𝑰′ in 

a uniform field generated by motionless charges. We obtain, substituting the expression (21) in the equation (12),  

 

𝑑

𝑑𝑡′

𝑚𝒖′

√(1 − 
𝑽𝒖′

𝑐2 )2 −  
𝑢′2

𝑐2

=
𝑽𝐿′

𝑐2
(𝑬′𝑰′) (1 −

𝒖′𝑽

𝑐2
).  

(22) 

It follows from equation (22), in particular, that initially motionless conductor begins to move under the action of 

the field with acceleration 
𝑽𝐿′

𝑚𝑐2
(𝑬′𝑰′). 

According to the equation of continuity for a homogeneous conductor with a constant electric current,  

𝑑𝑖𝑣𝑬′ = 0. 
Therefore, the conductor does not create an electric field around it. It follows from equations (16) and (19) that 

equation (15) for the magnetic field of a homogeneous conductor with a constant electric current must be  

𝑟𝑜𝑡𝑯′ =
4𝜋

𝑐
𝒋′. 
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Therefore, should be normal magnetic field, which is independent of speed 𝑽, around a homogeneous conductor 

with constant current. Suppose a particle moves with an initial velocity 𝒖𝑛
′  in a constant and homogeneous magnetic 

field 𝑯′ generated by the conductors with the electric current and oriented in the z' axis direction. We perform in the 

equation (13) variable change 

𝑡′ = 𝜏′ +
𝑉𝑥′

𝑐2
 

and get the equation of motion in the usual form  

 
ℰ0

′

𝑐2
 
𝑑𝒖∗

𝑑𝜏′
 = [𝒖∗𝑯′] ,  (23) 

where  

𝐮∗ =
𝒖′

𝟏 −
𝒖′𝑽
𝑐2

 . 

The dependence is for the coordinate r'  of the particle 

𝒓′ = 𝒓0
′ (𝒓𝑛

′ , 𝒖𝑛
∗ , 𝑯′, 𝜏′), 

where 𝒓0
′  - the solution of equation (23) with the initial conditions: 𝒓0

′ = 𝒓𝑛
′  and 𝒖∗ = 𝒖𝑛

∗ . It follows from equation 

(23) [7] 

𝑥′ = 𝑥0
′ + 𝑟sin(𝜔𝜏′ + 𝜁), 𝑦′ = 𝑦0

′ + 𝑟 cos(𝜔𝜏′ + 𝜁) , 𝑧′ = 𝑧0
′ +

𝑢𝑧𝑛
′ 𝜏′

1 − 
𝑽𝒖𝑛

′

𝑐2

 , 

where 

𝜔 =
𝑒𝑐𝐻′

ℰ0
′ ,           𝜁,            𝑢𝑧𝑛

′ ,            𝑟 =
ℰ0

′ 𝑢0
∗

𝑒𝑐𝐻′ =
𝑚𝑐𝑢0

′

𝑒𝐻′√(1− 
𝑽𝒖𝑛

′

𝑐2 )2− 
𝑢𝑛

′2

𝑐2

 ,      𝑢0
∗ = √𝑢𝑥

∗𝟐 + 𝑢𝑦
∗𝟐 

are constants.  

The particle moves along a spiral. The radius r of the spiral depends on the scalar product 𝑽𝒖𝑛
′ , and the drift velocity 

along the z'-axis is proportional to 1 −  
𝑽𝒖′

𝑐2  and, therefore, does not remain constant. 

Let us consider some mechanical processes, in which the anisotropy of the space in the frame K' should have been 

manifest itself. We consider the motion of a particle in a force field perpendicular to the axis x'. Suppose that at the 

initial moment 𝑢𝑥
′ (0) = 0 and ℰ0

′  (0) = ℰ𝑛
′ . We get from equation (13) 

 𝑢𝑥
′ = −

𝑉(ℰ0
′ − ℰ𝑛

′ )

ℰ0
′ − (ℰ0

′ − ℰ𝑛
′ )

𝑉2

𝑐2

 .  (24) 

That is, the particle is deflected in the opposite direction to the vector 𝑽, when its kinetic energy is increasing and - 

in the direction of the vector 𝑽 when its kinetic energy decreases. 

The equality binding the velocity of a particle with its kinetic energy follows from the expression (11) 

 𝑢′ =
𝑐√ℰ0

′2 − 𝑚2𝑐4

ℰ0
′ + √ℰ0

′2 − 𝑚2𝑐4 𝑉
𝑐

𝑐𝑜𝑠𝜃𝑢
′
 ,  (25) 

Hence it follows, for example, that angular velocity ω' of the rotator, that is, of a material point of mass m, which 

withheld by means of a weightless rigid rod at a constant distance from the center of rotation, will be at the free rotation 

 𝜔′ =
𝑐√ℰ0

′2 − 𝑚2𝑐4

𝑟′ (ℰ0
′ − √ℰ0

′2 − 𝑚2𝑐4 𝑉
𝑐

𝑠𝑖𝑛𝜑′𝑐𝑜𝑠𝜓′)
 ,  (26) 

where r' - rod length, φ' - the angle between the rod and the projection of vector 𝑽 onto the plane of rotation, ψ' - the 

angle between the plane of rotation and the vector 𝑽. At that the energy ℰ0
′  of the particle remains constant. The observ-

er located at the center of rotation can to fix the dependency of the angular velocity from the angles φ' and ψ'.  

Formula (25) is fair, obviously, and for the velocity of the charged particle in a constant homogeneous magnetic 

field. And formula (26) is fair in the case of a flat rotational motion of this particle. At that r' should be understood as 

the radius-vector drawn from the center of rotation to the particle and 𝜑′ - as the angle between r' and the projection of 

vector 𝑽 onto the plane of rotation. 

We will consider some optical phenomena in which the anisotropy of the space in the frame K' should have been 

manifest itself. We define a change of direction of light propagation at the transition from the frame K' to the frame K'' 

moving relative of K' with a constant velocity u' (the phenomenon of aberration). We assume that the vector u lies in 

the xy plane and its direction coincides with the direction of the x"-axis of the frame K''. We introduce in the frame K 

another Cartesian coordinate system 𝑥1, 𝑦1, z , the axis z which coincides with the axis z of the existing coordinate sys-

tem and the axis 𝑥1 is oriented in the direction of the vector u. 

The angle of aberration     𝛥𝜃 = 𝜃𝑐"𝑣" − 𝜃𝑐′𝑢′ , 

where 𝜃𝑐′𝑢′ is the angle between the vector c' of the velocity of light in the frame K' and the vector u', 𝜃𝑐"𝑣" is the 

angle between the vector c" of the velocity of light in the frame K'' and the vector −𝒗" equal to the velocity of the frame 

K' relative to the frame K", but aimed in the opposite direction. We define the cosine of the angle 𝜃𝑐′𝑢′ according to the 
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formula 

𝑐𝑜𝑠𝜃𝑐′𝑢′ =
𝒄′𝒖′

𝑐′𝑢′
 . 

We obtain, turning to the variables of the frame K using formulas (4), (6) 

𝑢′ =
√(𝒖 − 𝑽)2 −

𝑉2

𝑐2 𝑢2𝑠𝑖𝑛2𝜃𝑢𝑣

1 − 𝑉2 𝑐2⁄
 , 𝑐′ = 𝑐

1 −
𝑉
𝑐

𝑐𝑜𝑠𝜃𝑐𝑣

1 − 𝑉2 𝑐2⁄
 , 

where 𝜃𝑢𝑣 - the angle between the vectors u and 𝑽, and 𝜃𝑐𝑣 - the angle between the vectors c and 𝑽, and, finally,  

 𝑐𝑜𝑠𝜃𝑐′𝑢′ =

𝒄(𝒖 − 𝑽)
𝑐2 −

𝒖𝑽
𝑐2 +

𝑉2

𝑐2 (1 −
𝑐𝑦𝑢𝑦

𝑐2 )

(1 −
𝑉
𝑐

𝑐𝑜𝑠𝜃𝑐𝑣)√(𝒖 − 𝑽)2

𝑐2 −
𝑉2𝑢2

𝑐4 𝑠𝑖𝑛2𝜃𝑢𝑣

 .  (27) 

A similar expression is for cos𝜃𝑐"𝑣". It differs from (27) by sign and the fact, that the magnitudes u and 𝑽 are inter-

changed, respectively 𝜃𝑐𝑣 is replaced by 𝜃𝑐𝑢 - the angle between the vectors c and u, 𝑐𝑦𝑢𝑦 is replaced by 𝑐𝑦1
𝑉𝑦1

. In 

addition, we must take into account that 

−𝑉2𝑐𝑦𝑢𝑦 = −𝑉2𝒄𝒖 + (𝑽𝒄)(𝑽𝒖) , −𝑢2𝑐𝑦1
𝑉𝑦1

= −𝑢2𝒄𝑽 + (𝒖𝒄)(𝑽𝒖). 

As a result, we get for the difference of the cosines of the angles 𝜃𝑐′𝑢′ and 𝜃𝑐"𝑣" with precision up to magnitudes of 

second degree with respect to V/c and u/c  

 𝑐𝑜𝑠𝜃𝑐′𝑢′ − 𝑐𝑜𝑠𝜃𝑐"𝑣" =
|𝒖 − 𝑽|

𝑐
𝑠𝑖𝑛2𝜃𝑐𝑢−𝑣 [1 +

𝒄(𝒖 + 𝑽)

𝑐2
] −

2(𝒖 − 𝑽)

𝑐3|𝒖 − 𝑽|
[𝒖(𝑽𝒄) − 𝑽(𝒖𝒄)]  (28) 

where 𝜃𝑐𝑢−𝑣 - the angle between the vectors 𝒄 and 𝒖 − 𝑽 . 

For small values of the angle of aberration 𝛥𝜃 

 𝑐𝑜𝑠𝜃𝑐′𝑢′ − 𝑐𝑜𝑠𝜃𝑐"𝑣" = 𝛥𝜃𝑠𝑖𝑛𝜃𝑐"𝑣".  (29) 

It follows from the formulas (4) in the first approximation on 
𝑉

𝑐
 and on 

𝑢

𝑐
 

 𝒖 − 𝑽 ≈ 𝒖′, 𝑽 − 𝒖 ≈ 𝒗′′,  (30) 

and in the zero approximation 𝒄′′ ≈ 𝒄. We get the following expression for 𝛥𝜃, substituting (29) in (28) and taking 

into account (30)  

 𝛥𝜃 =
𝑢′

𝑐
𝑠𝑖𝑛𝜃𝑐"𝑣" [1 +

𝒄(𝒖 + 𝑽)

𝑐2
] +

2𝒗′′

𝑐3𝑣′′𝑠𝑖𝑛𝜃𝑐"𝑣"

[𝒖(𝑽𝒄) − 𝑽(𝒖𝒄)] .  (31) 

The scalar product of the vector 𝒗′′ on the double cross product contains in the last summand in equation (31). We 

get, performing a cyclic permutation and replacing 𝒄 on 𝒄′′, 

 𝛥𝜃 =
𝑢′

𝑐
𝑠𝑖𝑛𝜃𝑐"𝑣" [1 +

𝒄(𝒖 + 𝑽)

𝑐2
] +

2[𝒗′′𝒄′′][𝒖𝑽]

𝑐3𝑣′′𝑠𝑖𝑛𝜃𝑐"𝑣"

 .  (32) 

Thus the angle of aberration is equal to 
𝑢′

𝑐
𝑠𝑖𝑛𝜃𝑐"𝑣" in a first approximation, according to (32), which coincides with 

the usual expression for the angle of aberration [7]. The dependence of 𝛥𝜃 on the velocitys 𝑽 and 𝒖 of the frames К' and 

К'' relatively К appears in the second approximation according to (32).  

The magnitude of the Doppler effect in the frame K' also should have been depend on 𝑽. We consider the general 

case when source and observer are moving both. We get the transformation of frequency using the transformations (3) 

and based on the invariance of the phase 

 𝜈′ = 𝜈
1 −

𝑽𝒌
𝑐

√1 − 𝑉2 𝑐2⁄
 ,  (33) 

where 𝜈 - the frequency in the K, 𝜈′ - the frequency in the K', k – unit vector in the direction of the radiation in the 

frame К. The observed frequency, as follows from the formula (33), is equal  

 𝜈𝑠 =
(1 − 𝒖𝑠𝒌 𝑐⁄ )√1 − 𝑢𝑖

2 𝑐2⁄

(1 − 𝒖𝑖𝒌 𝑐⁄ )√1 − 𝑢𝑠
2 𝑐2⁄

𝜈𝑖  ,  (34) 

where 𝜈𝑖  - source frequency in the comoving frame, 𝒖𝑖 and 𝒖𝑠 - the velocitys in the frame К of source and observer, 

respectively. We will receive turning to the variables of the frame K' in equation (34) by using the transformations (4), 

(5)  

 𝜈𝑠 =
√(1 − 𝑽𝒖𝑖

′ 𝑐2⁄ )2 − 𝑢𝑖
′2 𝑐2⁄ (1 − 𝒖𝑠

′ 𝒌′ 𝑐⁄ − 𝑽𝒖𝑠
′ 𝑐2⁄ )

(1 − 𝒖𝑖
′𝒌′ 𝑐⁄ − 𝑽𝒖𝑖

′ 𝑐2⁄ )√(1 − 𝑽𝒖𝑠
′ 𝑐2⁄ )2 − 𝑢𝑠

′2 𝑐2⁄
𝜈𝑖  .  (35) 

Consider the experiment [8] for the detection of so-called "ether wind" as an example of the Doppler effect. The 

source and the absorber of radiation move around the circumference in this experiment, being on opposite ends of its 
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diameter. The radiation comes from the source to the absorber along the chord at an angle to the diameter 𝛽 ≈
𝑢𝑖

′

𝑐′
. In this 

case  

𝒖𝑠
′ 𝒌′

𝑐⁄ =
𝒖𝑖

′𝒌′

𝑐⁄ = −
u𝑖

′sin𝛽
𝑐⁄ ~

𝑢𝑖
′2

𝑐2
 ,

𝑽𝒖𝑠
′

𝑐2⁄ = −
𝑽𝒖𝑖

′

𝑐2⁄ +
𝑉𝑢𝑖

′

𝑐2
𝛽sin𝜃𝑖

′ , 

where 𝜃𝑖
′ - the angle between the vectors 𝑽 and 𝒖𝑖

′. We get, by using decomposition in degrees of small parameters 
𝑢𝑖

′

𝑐
 and 

𝑉

𝑐
 in the expression (35),  

𝜈𝑠

𝜈𝑖

= 1 −
1

2
(
𝑽𝒖𝑖

′

𝑐2
)2 −  

5𝑢𝑖
′2𝑽𝒖𝑖

′

2𝑐4
−

3𝑢𝑖
′4

8𝑐4
 . 

That is, the relative frequency change is the magnitude of the fourth degree of smallness according to the formula 

(35). Or, as we can easily see - third degree under the condition if the source and the absorber would be located on a 

circle at an angle different from zero and π on the magnitude of the order of unity. 

We will define the change of temporal intervals at the transition from the frame K' to the frame K'' moving relative 

of K' with a constant velocity u' using the transformation (3). Can be written time transformation in the form 

 𝑡′′ =
√1 − 𝑢2 𝑐2⁄

√1 − 𝑉2 𝑐2⁄
𝑡′,  (36) 

where u – the velocity vector of the frame K'' in the frame К. We get, going in the formula (36) from u to u' by us-

ing the transformations (4),  

 𝑡′′ = √(1 −  
𝑽𝒖′

𝑐2
)2 −  

𝑢′2

𝑐2
 𝑡′.  (37) 

Achieved very high accuracy when checking of the effect of time dilation in a fast moving frames in experiments 

with ultrarelativistic decaying particles [9]. Let 𝑡′′ is the time in the frame K" of disintegration of the motionless in this 

frame particle. We can imagine the equality (37), using the expression (11) for the energy of the particle, also in the 

form 

 
𝑡′′

𝑡′
=

𝑚𝑐2

ℰ0
′ (1 −

𝑽𝒖′

𝑐2
) .  (38) 

We get, assuming u' ≈ c for ultrarelativistic particle,  

 
𝑡′′

𝑡′
=

𝑚𝑐2

ℰ0
′ (1 −

𝑉

𝑐
cos𝜃𝑢

′ ) .  (39) 

That is, the effect of the first degree relative to V/c should be. 

In conclusion we note that the choice of synchronization condition (2), meaning the introduction of a unified simul-

taneity in the frames K and K', is not consistent to the principle of relativity not only in the field of optics which corre-

sponds to the hypothesis of the existence of luminiferous ether but also in other areas of physics. 

We note also, based on the above, that permissible by the conventionalist concept of simultaneity an arbitrariness for 

selection of value of the synchronization parameter can lead to depending of time on the spatial coordinates. If we be-

lieve the correct synchronization (2), we thus believe that Einstein’s synchronization introduces in the frame K' the time 

dependence from the spatial coordinate x' and, thus, recognize that Einstein’s synchronization is incorrect. If we believe 

proper synchronization of Einstein, we must recognize incorrect synchronization (2) through which is introduced a 

unified simultaneity for frames K and K'. As follows from the above, different physical realities correspond to these 

both synchronizations. Permissible by the conventionalist concept introduction of a unified simultaneity for all inertial 

frames is equivalent to the assumption of existence of a physically highlighted frame. 
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